Menu

Copyright © Satoru Hiwa All rights reserved | This template is made with by Colorlib

Publications

    For more information, please check out my Google Schloar profile. "*" indicates the corresponding author of the article.

    Preprints

    1. T. Yamamoto, T. Sugiura, T. Hiroyasu and S. Hiwa*, "Task-guided Generative Adversarial Networks for Synthesizing and Augmenting Structural Connectivity Matrices for Connectivity-Based Prediction," bioRxiv, 2024.02.13.580039; doi: 10.1101/2024.02.13.580039 (Feb 2024).
    2. K. Toyofuku, S. Hiwa*, K. Tanioka, T. Hiroyasu and M. Takeda, "Hemispheric lateralization in older adults who habitually play darts: a cross-sectional study using functional near-infrared spectroscopy," bioRxiv, 2022.03.18.484828; doi: 10.1101/2022.03.18.484828 (Mar 2022). Accepted in Healthcare, doi: 10.3390/healthcare12070734.
    3. T. Ogihara, K. Tanioka, T. Hiroyasu and S. Hiwa*, "Predicting the Degree of Distracted Driving Based on fNIRS Functional Connectivity: A Pilot Study," bioRxiv, 2022.01.25.477783; doi: 10.1101/2022.01.25.477783 (Jan 2022).Now published in Frontiers in Neuroergonomics, doi: 10.3389/fnrgo.2022.864938
    4. K. Tanioka*, Y. Furotani and S. Hiwa, "Thresholding Approach for Low-Rank Correlation Matrix based on MM algorithm," bioRxiv, 2021.12.28.474401; doi: 10.1101/2021.12.28.474401 (Dec 2021). Now published in Entropy, doi: 10.3390/e24050579
    5. Y. Kikuchi, K. Tanioka, T. Hiroyasu and S. Hiwa*, "Interpersonal brain synchronization during face-to-face economic exchange between acquainted dyads," bioRxiv, 2021.12.20.473563; doi: 10.1101/2021.12.20.473563 (Dec 2021). Now published in Oxford Open Neuroscience, doi: 10.1093/oons/kvad007
    6. Y. Tsujimoto, S. Hiwa, Y. Nakamura, Y. Oe and T. Hiroyasu*, "L-MolGAN: An improved implicit generative model for large molecular graphs," ChemRxiv, 14569545.v3; doi: 10.26434/chemrxiv.14569545.v3 (May 2021).
    7. K. Tanioka* and S. Hiwa, "Low rank approximation of difference between correlation matrices by using inner product," bioRxiv, 2021.02.23.432533; doi:10.1101/2021.02.23.432533 (Feb 2021). Now published in Applied Sciences, doi: 10.3390/app11104582
    8. S. Okumura, M. Goudo, S. Hiwa*, T. Yasuda, H. Kitae, Y. Yasuda, A. Tomie, T. Omatsu, H. Ichikawa, N. Yagi and T. Hiroyasu, "Demarcation line determination for diagnosis of gastric cancer disease range using unsupervised machine learning in magnifying narrow-band imaging," medRxiv, 2020.11.03.20189472; doi:10.1101/2020.11.03.20189472 (Nov 2020). Now published in Diagnostics, doi: 10.3390/diagnostics12102491
    9. T. Miyoshi, K. Tanioka, S. Yamamoto, H. Yadohisa, T. Hiroyasu and S. Hiwa*, "Short-term effects on brain functional network caused by focused-attention meditation revealed by Tucker3 clustering on graph theoretical metrics," bioRxiv, 765693; doi:10.1101/765693 (Sep 2019). Now published in Frontiers in Human Neuroscience, doi: 10.3389/fnhum.2019.00473

    Journals

    1. K. Toyofuku, S. Hiwa*, K. Tanioka, T. Hiroyasu and M. Takeda, "Hemispheric lateralization in older adults who habitually play darts: a cross-sectional study using functional near-infrared spectroscopy," Healthcare, Volume 12, No. 7: 734, doi: 10.3390/healthcare12070734 (Mar 2024).
    2. K. Tanioka*, K. Okuda, S. Hiwa and T. Hiroyasu, "Estimation of a treatment effect based on a modified covariates method with $L_0$ norm," Artificial Life and Robotics, 2024, doi: 10.1007/s10015-023-00929-0 (Feb 2024).
    3. S. Isojima, K. Tanioka, T. Hiroyasu and S. Hiwa*, "Preliminary Investigation of the Association Between Driving Pleasure and Brain Activity with Mapper-based Topological Data Analysis," International Journal of Intelligent Transportation Systems Research, Volume 21, Pages 424-436, doi: 10.1007/s13177-023-00371-3 (Sep 2023).
    4. Y. Kikuchi, K. Tanioka, T. Hiroyasu and S. Hiwa*, "Interpersonal brain synchronization during face-to-face economic exchange between acquainted dyads," Oxford Open Neuroscience, Volume 2, kvad007, doi: 10.1093/oons/kvad007 (June 2023).
    5. S. Okumura, M. Goudo, S. Hiwa*, T. Yasuda, H. Kitae, Y. Yasuda, A. Tomie, T. Omatsu, H. Ichikawa, N. Yagi and T. Hiroyasu, "Demarcation line determination for diagnosis of gastric cancer disease range using unsupervised machine learning in magnifying narrow-band imaging," Diagnostics, Volume 12, No. 10: 2491, doi: 10.3390/diagnostics12102491 (Oct 2022).
    6. T. Ogihara, K. Tanioka, T. Hiroyasu and S. Hiwa*, "Predicting the Degree of Distracted Driving Based on fNIRS Functional Connectivity: A Pilot Study," Frontiers in Neuroergonomics, Volume 3, Article 864938, doi: 10.3389/fnrgo.2022.864938 (Jul 2022).
    7. N. Okumura*, S. Yamada, T. Nishikawa, K. Narimoto, K. Okamura, A. Izumi, S. Hiwa, T. Hiroyasu and N. Koizumi, "U-Net Convolutional Neural Network for Segmenting the Corneal Endothelium in a Mouse Model of Fuchs Endothelial Corneal Dystrophy," Cornea, Volume 41, Issue 7, Pages 901-907, doi: 10.1097/ICO.0000000000002956. (Jul 2022)
    8. K. Tanioka*, Y. Furotani and S. Hiwa, "Thresholding Approach for Low-Rank Correlation Matrix Based on MM Algorithm," Entropy, Volume 24, No. 5: 579, doi: 10.3390/e24050579 (Apr 2022).
    9. K. Tanioka* and S. Hiwa, "Low rank approximation of difference between correlation matrices by using inner product," Applied Sciences, Volume 11, No. 10: 4582, doi: 10.3390/app11104582 (May 2021).
    10. A. Fukushima, M. Sugimoto, S. Hiwa and T. Hiroyasu*, "Bayesian approach for predicting responses to therapy from high-dimensional time-course gene expression profiles," BMC Bioinformatics, Volume 22, Article number: 132 (2021). doi: 10.1186/s12859-021-04052-4 (Mar 2021).
    11. Y. Zhang, X. Qin, Q. Ma, M. Zhao*, S. Hiwa, T. Hiroyasu and H. Furutani, "Markov chain analysis of evolutionary algorithms on OneMax function – From coupon collector's problem to (1 + 1) EA," Theoretical Computer Science, Volume 820, Pages 26-44, doi: 10.1016/j.tcs.2020.03.007 (Jun 2020).
    12. T. Miyoshi, K. Tanioka, S. Yamamoto, H. Yadohisa, T. Hiroyasu and S. Hiwa*, "Revealing changes in brain functional networks caused by focused-attention meditation using Tucker3 clustering," Frontiers in Human Neuroscience, Volume 13, Article 473, doi:10.3389/fnhum.2019.00473 (Jan 2020).
    13. T. Yasuda*, T. Hiroyasu, S. Hiwa, Y. Okada, S. Hayash, Y. Nakahata, Y. Yasuda, T. Omatsu, A. Obora, T. Kojima, H. Ichikawa and N. Yagi, "Potential of Automatic Diagnosis System with Linked Color Imaging for Diagnosis of Helicobacter Pylori Infection," Digestive Endoscopy, doi: 10.1111/den.13509 (Aug 2019).
    14. A. Fukushima, M. Sugimoto, S. Hiwa and T. Hiroyasu*, "Elastic net-based prediction of IFN-β treatment response of patients with multiple sclerosis using time series microarray gene expression profiles," Scientific Reports, Volume 9, Issue 1, 1822; doi:10.1038/s41598-018-38441-2 (Feb 2019).
    15. M. Mizuno, T. Hiroyasu and S. Hiwa*, "A Functional NIRS Study of Brain Functional Networks Induced by Social Time Coordination," Brain Sciences, Volume 9, Issue 2, 43; doi:10.3390/brainsci9020043 (Feb 2019).
    16. N. Okumura, K. Kobayashi, N. Ishida, T. Kagami, S. Hiwa, T. Hiroyasu and N. Koizumi*, "Development of Cell Analysis Software to Evaluate Fibroblastic Changes in Cultivated Corneal Endothelial Cells for Quality Control," Cornea, Volume 37, Issue 12, Pages 1572-1578 (Dec 2018).
    17. S. Hiwa*, T. Katayama and T. Hiroyasu, "Functional near‐infrared spectroscopy study of the neural correlates between auditory environments and intellectual work performance," Brain and Behavior, e01104, doi:10.1002/brb3.1104 (Sep 2018).
    18. Q. Ma, Y. Zhang, K. Yamamori, H. Furutani*, S. Hiwa and T. Hiroyasu, "Markov chain analysis of evolutionary algorithms for monotonic functions," Artificial Life and Robotics, doi:10.1007/s10015-018-0463-9 (Sep 2018).
    19. K. Aoki*, S. Hiwa, H. Furutani and T. Hiroyasu, "Tobit model analysis of mutations causing haemophilia," Artificial Life and Robotics, Volume 23, Issue 3, pp 287–291, doi:10.1007/s10015-018-0431-4 (Sep 2018).
    20. S. Hiwa*, S. Obuchi and T. Hiroyasu, "Automated extraction of human functional brain network properties associated with working memory load through a machine learning-based feature selection algorithm," Computational Intelligence and Neuroscience, vol. 2018, Article ID 4835676, 12 pages, 2018. doi:10.1155/2018/4835676 (Apr 2018).
    21. N. Okumura, N. Ishida, K. Kakutani, A. Hongo, S. Hiwa, T. Hiroyasu and N. Koizumi*, " "Development of Cell Analysis Software for Cultivated Corneal Endothelial Cells," Cornea, Volume 36, Issue 11, Pages 1387-1394 (Nov 2017).
    22. S. Hiwa*, M. Miki and T. Hiroyasu, "Validity of decision mode analysis on an ROI determination problem in multichannel fNIRS data" Artificial Life and Robotics, 2017, Volume 22, Issue 3, pp 336-345, doi:10.1007/s10015-017-0362-5 (Sep 2017).
    23. S. Hiwa*, K. Hanawa, R. Tamura, K. Hachisuka and T. Hiroyasu, "Analyzing Brain Functions by Subject Classification of Functional Near-Infrared Spectroscopy Data Using Convolutional Neural Networks Analysis," Computational Intelligence and Neuroscience, vol. 2016, Article ID 1841945, 9 pages, 2016. doi:10.1155/2016/1841945 (Oct 2016).
    24. S. Hiwa*, M. Nishioka, T. Hiroyasu and M. Miki, "Novel Search Scheme for Multi-Objective Evolutionary Algorithms to Obtain Well-Approximated and Widely Spread Pareto Solutions," Swarm and Evolutionary Computation, Volume 22, Pages 30-46, ISSN 2210-6502, doi:10.1016/j.swevo.2015.01.004. (June 2015).
    25. S. Hiwa*, T. Hiroyasu and M. Miki, "Design Mode Analysis of Pareto Solution Set for Decision-Making Support," Journal of Applied Mathematics, vol. 2014, Article ID 520209, 15 pages, doi:10.1155/2014/520209 (Nov 2014).

    Refereed Conference Papers/Presentations

    1. S. Hiwa, "Brain Activity Data Modelling During Car Driving," International Workshop on Computational Intelligence in Human Informatics, IEEE World Congress on Computational Intelligence (WCCI) 2024, Yokohama, Japan (June 2024).
    2. S. Hiwa and T.Hiroyasu, "Manifold learning on time-varying functional connectivity matrices: A case study on meditation data," The 25th Annual Meeting of the Organization for Human Brain Mapping, Rome, Italy (June 2019).
    3. L. Perino, A. Fujii, T. Waku, A. Kobayashi, S. Hiwa and T.Hiroyasu, "Solution exploration using multi-objective genetic algorithm for determining experiment candidate," Proceedings of the 2018 conference on Genetic and Evolutionary Computation (GECCO 2018), pp. 1584-1589, ACM (July 2018).
    4. S. Hiwa and T.Hiroyasu, "Evolutionary optimization approach to explore the functional network organization during meditation," The 24th Annual Meeting of the Organization for Human Brain Mapping, Singapore (June 2018).
    5. S. Hiwa, M.Iizuka and T.Hiroyasu, "Characterizing the meditative state based on functional connectivity and low-frequency fluctuation," The 23rd Annual Meeting of the Organization for Human Brain Mapping, Vancouver, Canada (June 2017).
    6. T. Hiroyasu and S. Hiwa, "Brain functional state analysis of mindfulness using graph theory and functional connectivity," AAAI Spring Symposium - Technical Report, vol. SS-17-01 - SS-17-08, pp. 675–680, 2017 (Mar 2017).
    7. S. Hiwa, Y. Kohri, K. Hachisuka and T. Hiroyasu, "Region-of-Interest Extraction of fMRI data using Genetic Algorithms." 2016 IEEE Symposium Series on Computational Intelligence (SSCI 2016), Athens, Greece, (Dec 2016).
    8. K. Harada, M. Tanaka, S. Hiwa, H. Zille, S. Mostaghim and T. Hiroyasu, "Functional brain network extraction using a genetic algorithm with a kick-out method." Evolutionary Computation, CEC 2016. IEEE Congress on, Vancouver, Canada (Jul 2016).
    9. S. Hiwa, T. Hiroyasu, H. Yokouchi, M. Miki and M. Nishioka, "Reference point-based search scheme for multiobjective evolutionary algorithm," in: Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS), 2012 Joint 6th International Conference on, pp. 1666--1672 (Nov 2012).
    10. S. Hiwa, T. Hiroyasu and M. Miki, "Hybrid optimization using DIRECT, GA, and SQP for global exploration," in: Evolutionary Computation, CEC 2007. IEEE Congress on, pp.1709--1716 (Sep 2007).
    11. M. Miki, S. Hiwa and T. Hiroyasu, "Simulated Annealing using an Adaptive Search Vector," Cybernetics and Intelligent Systems, 2006 IEEE Conference on, pp.1--6 (Jun 2006).

    Non-Refereed Conference Papers/Presentations

    1. S. Hiwa and T. Hiroyasu, "Detecting meditative states through meta-state matching with time-varying functional connectivity matrices," 2017 Neuroscience Meeting Planner. Washington, D.C.: Society for Neuroscience (Nov 2017).
    2. S. Hiwa, M. Iizuka and T. Hiroyasu, "Graph theoretical analysis of functional connectivity network during breath-counting mindfulness meditation," 2016 Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience (Nov 2016).

    Domestic Conference Papers/Presentations

    1. 日和 悟,田中佑弥,礒嶋真生,谷岡健資,廣安知之,"ドライバ脳活動データに対するエネルギー地形解析の有効性の検証," 第22回 ITSシンポジウム2024(ベストポスター賞受賞) (2024年12月).
    2. 日和 悟,"ヒトと自動車のマルチモーダル計測に基づくマインドフル・ドライビングシステムの開発(総務省「戦略的情報通信研究開発推進事業(SCOPE)」ICT基礎・育成型研究開発2020年度課題)," ICTイノベーションフォーラム2020 (2021年1月).
    3. 日和 悟,廣安知之,"マインドフルネスを「見える化」する:脳の動的機能的結合に基づく瞑想状態," 日本マインドフルネス学会第4回大会(最優秀研究賞受賞) (2017年12月).
    4. 日和 悟,廣安知之,"脳機能イメージングによる瞑想状態の特徴抽出と検出," 第8回横幹連合コンファレンス (2017年12月).
    5. 日和 悟,飯塚まり,廣安知之,"自発性脳活動の強度と機能的結合度に基づく瞑想時脳状態の低次元表現," 第31回人工知能学会全国大会論文集 (2017年5月).
    6. 日和 悟, 廣安知之, 飯塚まり, "脳機能情報に基づく瞑想状態解析手法の提案," 日本マインドフルネス学会第3回大会 (2016年11月).
    7. 日和 悟,飯塚まり,廣安知之,"脳機能情報による瞑想状態の検討," 第30回人工知能学会全国大会論文集 1G4-OS-11a-1 (2016年6月).
    8. 日和 悟,廣安知之,三木光範,"大域的最適化のための複数最適化手法の動的制御法," 日本機械学会 第7回最適化シンポジウム (2006年12月).
    9. 日和 悟,廣安知之,三木光範,"大域的最適化のための複数最適化手法の動的制御法," 日本機械学会 第16回設計工学・システム部門講演会 (2006年11月).
    10. 三木光範,日和 悟,廣安知之,"適応的探索ベクトルをもつシミュレーテッドアニーリング," 日本機械学会 第18回計算力学講演会 (2005年11月).
    11. 日和 悟,三木光範,廣安知之,"多目的シミュレーテッドアニーリングを用いた知的LED照明システム," 情報処理学会 第67回全国大会 (2005年3月).
    12. 三木光範,廣安知之,日和 悟,實田 健,"ダミー目的関数をもつ多目的確率的山登り法,"情報処理学会 情報科学技術フォーラム (2004年9月).

    Bulletin Papers

    1. 日和 悟 "マインドフルネスとウェルビーイング," 特集「心とVR」,日本バーチャルリアリティ学会誌 第23巻,1号,30-34 (2018年3月).
    2. 三木光範,日和 悟,廣安知之,"LEDを用いた調色用照明システムの基礎的検討," 同志社大学理工学研究報告 Vol.46, No.3, pp 9-18 (2005年10月).

    Book

    1. 日和 悟(分担執筆)"第8章2節 人工知能を用いた脳活動データの解析と脳機能の解明," 「人工知能を用いた五感・認知機能の可視化とメカニズム解明」,技術情報協会,ISBN: 9784861048494(2021年6月).
    2. 廣安知之,日和 悟(分担執筆)"13.12 マインドフルネス," 中島秀之ら編著「AI辞典 第3版」,近代科学社,ISBN: 9784764906044(2019年12月).
    3. 日和 悟(分担執筆)"Chapter 5 マインドフルネス状態の推定," 飯塚まり編「進化するマインドフルネス」: ウェルビーイングへと続く道,創元社,ISBN: 4422101196(2018年5月).

    Media

    1. 「ACADEMIC EXPERTS/同志社大学大学院 生命医科学研究科医工学・医情報学専攻 ヒューマンインフォマティクス研究室 日和 悟 准教授」 News Letter from ITS Japan (2022.12.21)
    2. 「ウェルビーイングを日本視点で考える。ドミニク・チェン、石川善樹らの参加する研究会レポート」 bound bow (2018.06.26)
    3. 「幸せ高める脳活動解析」京都新聞夕刊 (2018.6.23)

    Patents

    1. 日和 悟,廣安知之 "脳活動状態定量化方法および脳活動状態計測装置," 特許第6821171号 (P6821171) (出願日:2016年9月20日,登録日:2021年1月8日)
    2. S. Hiwa "Secondary battery state-of-charge estimating device and secondary battery state-of-charge estimating method," PCT/JP2016/000545(WO2016129248 A1) (Feb 2016)
    3. 日和 悟 "二次電池の充電状態推定装置および充電状態推定方法," (2015年2月)
    4. T. Omi, K. Miura, S. Hiwa, T. Iida, K. Kakutani, "Battery state estimation device and method of estimating battery state," JP6507375B2/US10345386B2/CN106062579B (Applied: 02-27-2015, Granted: 07-09-2019)
    5. 近江 亨, 三浦謙一, 日和 悟, 飯田琢磨, 角谷和重, "電池の状態推定装置,および,電池の状態推定方法," 特許第6507375号(P6507375)(出願日:2015年2月27日,登録日:2019年4月12日)
    6. S. Hiwa "Pulse-width-modulated waveform generation device," PCT/JP2013/004474(WO2014024402 A1), (Jul 2013)
    7. 日和 悟 "パルス幅変調波形生成装置," 特願2012-173551 (2012年8月)
    8. 日和 悟, 青木祐二, "DC/DC コンバータ" 特願2011-006594 (特開2012-151926) (2011年1月)