募集中

元気な学生募集中です

死ぬほど研究したい & 元気に活動したい 学生募集中です。
研究の仕方、論文の書き方、研究を指導します。
当方、生きのよい准教授がおります。
企業、社会人で学位を取得したい方々もwelcomeです。
兎にも角にも、やる気に溢れ、元気で、天下を取りたい学生、求めています。

研究指導、募集中です

研究指導形式の委託研究も募集中です。
今、注目を集めている、AIや最適化に関連した研究指導が可能です。
指導例、豊富です。
それぞれのアルゴリズムの説明だけでなく、設計に取り込むときのノウハウ、実際の問題への適用結果へのコメント、技術相談が可能です。
これから重要になる 生体情報処理 関連の技術相談も可能です。

Task-guided Generative Adversarial Networks for Synthesizing and Augmenting Structural Connectivity Matrices for Connectivity-Based Prediction

我々のグループの新しいプレプリントです。

・この論文では、ヒトのコネクトミクス研究において、構造と機能の2つのネットワーク情報が重要であることを主張している重要な論文です。
・また、機械学習技術は有用ですが、通常、大規模なデータセットが必要です。しかしながら、ヒトを対象とする実験では、このデータセットを用意することが非常に難しくコストがかかります。
・この問題を解決するための、限られたデータセットからサンプルサイズを拡大するために生成敵対ネットワーク(GAN)を活用する新しいデータ拡張方法である「Task-guided Generative Adversarial Networks II」を提案しています。
・この方法は、データ内のより多くのタスク指向の特徴を捕捉することにより、データを効果的に拡張し、人間の認知特性の予測精度を向上させることを目指しています。
・NIMHヘルスリサーチボランティアデータセットを使用して流動知能を予測するためのデータ拡張の有効性を評価しました。
・提案手法によるデータ拡張は、予測精度を向上させるだけでなく、その潜在空間が構造的結合性と認知結果との相関を効果的に捉えることを示唆しています。